

CodeTalk: Improving Programming Environment
Accessibility for Visually Impaired Developers

Venkatesh Potluri

Microsoft Research India

Bangalore, India

t-vepot@microsoft.com

Priyan Vaithilingam

Microsoft Research India

Bangalore, India

t-prvai@microsoft.com

Suresh Iyengar

Microsoft Research India

Bangalore, India

supartha@microsoft.com

Y Vidhya

Vision Empower Trust

Bangalore, India

vidhya@visionempowertrust.in

Manohar Swaminathan

Microsoft Research India

Bangalore, India

swmanoh@microsoft.com

Gopal Srinivasa

Microsoft Research India

Bangalore, India

gopalsr@microsoft.com

ABSTRACT

In recent times, programming environments like Visual

Studio are widely used to enhance programmer

productivity. However, inadequate accessibility prevents

Visually Impaired (VI) developers from taking full

advantage of these environments. In this paper, we focus on

the accessibility challenges faced by the VI developers in

using Graphical User Interface (GUI) based programming

environments. Based on a survey of VI developers and

based on two of the authors’ personal experiences, we

categorize the accessibility difficulties into Discoverability,

Glanceability, Navigability, and Alertability. We propose

solutions to some of these challenges and implement these

in CodeTalk, a plugin for Visual Studio. We show how

CodeTalk improves developer experience and share

promising early feedback from VI developers who used our

plugin.

Author Keywords

Accessibility; Programming Environments; Visually

Impaired; Audio Debugging

ACM Classification Keywords

H.5.2. Information interfaces and presentation: User

Interfaces

INTRODUCTION
Software development is one of the fastest growing fields

[10]. However, people with visual impairments are not very

well represented in the field of computer science and

software development: we are unaware of any formal study

that confirms this.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2018, April 21–26, 2018, Montreal, QC, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5620-6/18/04…$15.00

https://doi.org/10.1145/3173574.3174192

However, we consider the surprise with which the fact of

blind programmers is received (see for example the

comments in [15]) as an empirical confirmation. The

percentage of developers who have self-reported as being

blind in the 2017 Stack Overflow survey is about 1% which

is much more than the percentage of people with visual

impairments in the general population [11]. We believe that

the 1% reflects that blind developers are happy with the

Stack Overflow question and answer website because it is

accessible and consequently use it in higher numbers.

According to the US National Bureau of Labor statistics

[21] only about 2% of workers in the computing and

mathematical professions have a disability compared to the

percentage of people with disabilities in the general

population of the US which is about 19% according to the

US Census Bureau. There are several reasons for this

under-representation, and in this paper, we address one of

them, namely the poor accessibility of developer tools.

People with visual impairments, use Assistive Technology

(AT) like screen readers, screen magnifiers, and braille

displays to access computers. They have also been using the

same to write computer programs. In recent times, GUI

based Integrated Development Environments (IDEs) have

become more widely used [11]. These modern IDEs have

adopted many innovations to aid program comprehension

and development by providing features like syntax

highlighting, variable watch windows and ability to execute

a code both forward and backward [13]. These feature-rich

IDEs enable developers to be more productive and efficient.

Though screen readers provide basic accessibility to IDEs1,

many features that make them so useful to sighted

developers remain inaccessible to developers using screen

readers.

1 From here on, we use IDEs interchangeably with GUI

based IDEs

mailto:t-vepot@microsoft.com
mailto:t-prvai@microsoft.com
mailto:supartha@microsoft.com
mailto:vidhya@visionempowertrust.in
https://doi.org/10.1145/3173574.3174192

In this paper, we make the following contributions towards

making programming environments more accessible to VI

developers.

• We present a classification of accessibility issues in

four headings: discoverability, glanceability,

navigability, and alertability and provide illustrative

examples of each kind. This classification was arrived

at by combining the subjective experience of two of the

authors with the results of a user survey on IDE

accessibility.

• We propose solutions to address a subset of the

identified issues and implement these solutions as

CodeTalk, a plugin for Visual Studio. Unlike related

work on accessibility of IDEs which address specific

activities, we address accessibility issues across the

entire spectrum of activities around software

development from comprehending code, editing,

debugging, and working with teams on large

codebases.

• We present feedback that validates our approach by an

exploratory user study with six VI developers using

CodeTalk.

The paper is organized as follows: Section 2 describes the

motivation for this work and summarizes related work.

Section 3 presents a broad classification of accessibility

issues in IDEs. In Section 4, we introduce our approaches to

solve these and discuss details about CodeTalk, our Visual

Studio plugin. In Section 5, we discuss an exploratory user

study performed to get some initial user feedback on our

approaches. Section 6 and Section 7 presents the key

conclusions and highlights several directions for future

research.

MOTIVATION AND RELATED WORK

The major motivating factors for this research are the

personal experiences of two of the authors A and B. Author

A is a novice programmer who primarily used a command

line interface and a text editor to program. A’s attempt to

move to an IDE like Visual Studio was unsuccessful since

the accessibility issues were found to be too daunting

without continuous help from a sighted person. Author B

has been programming using a screen reader and B’s

experiences with IDEs involved significant effort in

tackling inaccessibility. The author was able to cope with

just text-based tools for academic work and part-time

projects. However, moving to a large organization as part of

a product team required the use of an IDE used by the other

team members to work efficiently. At this point, the author

realized why sighted developers were able to work at a

much faster pace. They were able to read code much faster

than the screen reader user, quickly comprehend the

structure of huge code bases, be informed about errors

without explicit actions and move to any part of the code by

pointing and clicking. Motivated by this experience, we

looked at earlier research efforts that address accessibility

issues in programming environments.

IDE accessibility for developers with visual impairments is

still a new research area. There is very little exploration that

has been done to improve the development and

programming experience for VI developers. That said, there

has been interest in both academia and industry to improve

the accessibility of developer tools. IDEs like Eclipse [6],

Apple’s XCode [7] and Microsoft’s Visual Studio [4] add

accessibility support for screen reader users. However, this

accessibility support is quite limited to having all buttons

and UI elements spoken in some cases. Also, there have

been several other attempts by researchers to improve the

accessibility of developer tools. Emacspeak [14] is an early

effort to improve developer tools accessibility. More

recently, Baker et al., [2] address the difficulties faced by

blind programmers while reading code. They describe

StructJumper, an Eclipse plugin that displays an accessible

tree-view of code structure with respect to the current line.

This effort attempts to help VI developers get complete

context with respect to a specific line of code. The plugin

focuses on reading code effectively. Smith et al. [22]

explain the problem of navigating hierarchical tree views in

detail, and, propose requirements to make the tree views

more usable. [22] complements our work on glanceability

and navigability in CodeTalk. The key difference is that

CodeTalk lays down a framework to address a broad

spectrum of challenges faced by VI developers using IDEs

while [22] does an in-depth investigation on nonvisual

navigation of hierarchical data.

Sodbeans [19] and WAD [18] discuss approaches to use

audio for debugging code. The Sodbeans plugin uses

speech-based cues to enable VI developers to debug. WAD

emphasizes on the developers’ ability to comprehend the

execution flow of the code.

Audio (both speech and non-speech) has been explored to

enable VI developers to program. [16] explores the use of

auditory cues (Spearcons) in reading source code. The re-

searchers synthesized source code with different audio cues

like speech, tones, and white noise, using NVDA’s speech

output and Audacity. They used combinations of these

audio cues to represent the code file. The participants were

asked to comprehend code using these audio files. This

effort demonstrates that relying solely on screen-reading is

not sufficient for VI developers to comprehend code.

[8] uses 3D printed models for VIPs to explore program

output. Students wrote programs to generate tactile versions

of the data to explore program output. Several efforts like

[9] and [12] focus on teaching programming to blind

students. As seen above, all the related research has focused

on enabling VIPs to do specific tasks while programming.

There is no work that addresses accessibility issues that

arise across the complete program development cycle.

We do not address the larger challenge of building tools and

languages that facilitate the learning of computer

programming. However, we point to some interesting

efforts in this direction: Quorum [20] started out as a

language that is easily accessible to screen readers but has

since evolved to a much more general effort on evidence-

based language design. The APL [17] is another effort to

introduce programming to blind students. In this paper we

focus on enhancing accessibility of IDEs to VIPs who have

learnt the basics of programming and are currently users of

IDEs.

To go beyond the specific experiences of the two authors

mentioned and to understand the spectrum of accessibility

issues that arise during the complete programming cycle,

we conducted a user survey which we discuss in the next

section.

Preliminary Survey

We conducted a preliminary survey with an objective to

collect opinions from VI developers on IDE accessibility,

with a specific focus on Microsoft Visual Studio. The

survey was hosted online, and we made sure all parts of the

survey were accessible to screen reader users. On

completion of the survey, participants interested in giving

more information could opt-in to participate in additional

interviews by conveying their interest over email. Four out

of the 20 participants of the survey participated in further

detailed interviews. Details of the survey, including the

questions, participants’ demographic information and

programming experience levels, etc., can be found in [1].

The learnings from the survey have been summarized in the

next subsection.

Learnings from the Survey

The major observation we made when we collated the

survey results and the interview responses, was that the

accessibility issues were across the entire spectrum of

software development. A sample of the responses to “list

top 5 accessibility challenges” illustrates this very well:

• “watch windows are hard to use -specially the quick

watch”

• “solution Explorer hangs on very large solutions when

attempting to navigate within”,

• “Sometimes controls don’t have labels and report their

class name”

• “access to breakpoint status while debugging”

• “There is no alternate way to get to things if you don’t

know one of the thousands of shortcut commands”

• “difficulty in moving from error screen to the editor

where program is present (Control + tab) doesn’t

work”

• “Access to variable type and other info (usually

accessed by hovering the mouse over the variable

name)”

These responses were from VI developers with experience

ranging from a year to more than 25 years. The issues

people face range from simple ones like “Difficult to

determine when code is folded up (hidden) and must be

expanded” to that of an advanced user’s “That comparison

tool is 100% inaccessible with screen readers so I have to

configure my own code review tool in visual studio”

We then stepped back a bit to find if there is some structure

to the numerous accessibility issues which will help us

devise a solution process to handle them effectively. The

result of this effort is the classification of accessibility

challenges that we describe in the next section.

CLASSIFICATION OF ACCESSIBILITY CHALLENGES IN
IDES

Based on the data from the accessibility survey, experience

of the visually impaired authors, as well as related work on

IDE accessibility, we classify accessibility challenges into

four broad categories and give some example scenarios for

each. We use examples from Visual Studio.

1. Discoverability: This is the ability with which a user

can find features of the system to increase proficiency

over time. Sighted users have many visual clues that

indicate new features that could be useful for a given

context, but VI developers need to depend on others to

tell them about such features. Discoverability is an

issue for sighted users as well but is exacerbated for VI

developers. For instance, the author B was not aware of

the variable watch window2 and used console messages

to find the variable values until pointed out by a

sighted team member. The following are some

examples of discoverability issues:

• Existing features: Many features of the IDEs are

overtly visible in the UI, but are hidden inside

multiple levels of navigational hierarchy for screen

reader users.

• New and modified features: With every new

version of the IDE, new features get added and

existing features are modified. Many of these

changes are visually represented, and there is no

structured approach for VI developers to be

informed of the same. This becomes more evident

when IDEs do a complete UI over haul, changing

the UI hierarchy and arrangement.

2. Glanceability: Visual Studio and most IDEs by

definition, use the large real estate provided by high

resolution monitors to present many aspects of the

program development process in one screen. They

depend on the ability of the developer to glance at

various aspects of the development process at any

given time. For sighted developers, glanceability is

innate to the medium of information access, vision.

The IDEs leverage the high bandwidth nature of visual

input and provide features that enable sighted

developers to make sense of information by quickly

2 Watch window is used to evaluate variables and

expressions during debugging.

glancing at the screen and the IDE’s windows. Visual

input, being a more active way of acquiring

information gives an opportunity to unobtrusively

provide information to the IDE’s users without

interrupting their current task. Unfortunately, these

features are not available to the VI developers, and

they often must consume information linearly.

Following are some example situations:

• Quick overview of the code structure: Unlike

sighted users, who can get the overview of the

code structure by quickly scrolling up and down a

page, the VI developer should go through the code

line by line.

• Getting the context of the given line: There are

situations when the VI developer lands in an

unknown line of code due to breakpoints or

exceptions, or simply because the developer was

distracted. On the other hand, based on the line

number and the vertical slider bar's position, a

sighted user has a notion of the size of the program

file and the relative location of the cursor with

respect to the beginning and the end of the file.

• Indentation level: Indentation levels in whitespace

dependent programming languages like Python,

are easy to perceive for sighted users unlike VI

developers, who must read the number of

whitespaces for every line.

• At any given point, sighted developers can look at

multiple pieces of information (the console log

window, stack traces, the actual code and a lot

more information as per the developer’s

preference). VI developers using screen readers

have to get this information by explicitly getting

focus on to each window in sequence.

3. Navigability: An added advantage for sighted

developers is the ability to quickly navigate through

code using scroll, point and click. Screen reader users

are limited to the search functionality and few other

navigation features provided by the IDEs. This also

extends to navigating between multiple panes within

the IDE. Following are some example scenarios:

• Skipping through large comments: Sighted

developers can skip through large code comments

like documentation and licenses quickly as

compared to screen reader users. It is difficult for

VI developers to navigate to the end of these

comments.

• Navigating through large blocks of code: Sighted

developers can scroll, point and click to navigate

through blocks of code like if-else block, try-catch

block. However, navigating through code within a

block is not so intuitive and easy for VI developers

using screen readers.

• Navigating across various windows: Sighted

developers can easily glance over multiple

windows at the same time like the watch window,

call stack window, debug window, etc. On the

other hand, VI developers must go through

numerous keystrokes to access these windows.

Figure 1. Red squiggle shown for error in Visual Studio

4. Alertability: IDEs convey a significant amount of real

time information through a completely visual interface

[2]. Such information alerts the developer to issues that

need immediate attention or actions that are in

progress. The following examples enumerate few

scenarios where VI developers do not get access to the

real time information provided by the IDE:

• Debugging Information: Information related to

debugging like values of variables and breakpoint

information are not available to a VI developer

unless explicit actions are performed.

• Error Information: Syntax error information in

IDEs is given by visual cues like red squiggle

[Figure 1], which are not available to VI

developers pro-actively.

These accessibility challenges result in a huge barrier for VI

developers in exploiting the power of IDEs. Although one

can bundle all these limitations and attribute them to the

fact that sighted developers can either point-click or scroll-

click while VI developers cannot, the above grouping helps

us devise expedient alternates using a structured approach.

We also note that these groupings helped organize our

understanding of accessibility challenges and are not meant

to be water tight compartments. In the next section we

describe CodeTalk, our vehicle for addressing the above

challenges.

CODETALK

CodeTalk is implemented as a Visual Studio plugin.

CodeTalk works with Visual Studio versions 2015/2017

and supports C# and Python at the time of writing this

paper. However, implementing support for newer languages

is straightforward. We have chosen to implement CodeTalk

as a Visual Studio plugin mainly due to the following

reasons:

1. Visual Studio provides APIs that allows us to tap into

all the IDE’s features.

2. Visual Studio’s increasing support for a variety of

programming languages.

3. Free availability of Visual Studio community edition.

4. Visual Studio is the most popular IDE among

developers [11].

In CodeTalk, we address the accessibility challenges

categorized in the previous section by focusing on the root

cause of the issues: Screen reader based access to

information is user dependent, unlike the use of a GUI by a

sighted user. The user must actively seek out information

from various components of the IDE. And since the

information access with a screen reader is dependent on

cursor focus, the user must explicitly set focus on the

appropriate pane. In some situations, the VI developer

might not be aware of the presence of a pane containing the

information they are looking for. Our approach is to

minimize the effort of the VI developer actively seeking

information by proactive extraction and presentation of

information or by introducing an audio channel distinct

from the screen reader. CodeTalk extracts the information

relevant to the context and makes it accessible to the

developer with reduced effort. To this effect, we introduce

new customizable keyboard shortcuts as shown in Table 1.

We present below a few of the features of CodeTalk in

detail.

Code Summary and Functions List

One of the first things a developer would want to do after

opening a new code file is to glance at it and get

information. Which file is this? What are the classes in this

file? What are the functions in each class? VI developers

get this information using standard navigation techniques

(find function, read code one line at a time, etc.). In

CodeTalk, we introduce a code summary feature. Using

this, a developer gets an accessible tree view [Figure 2]

containing the details about the namespaces, classes, and

functions in the file. The developer3 using a screen reader

can explore the tree view and get an overall understanding

of the code structure. Additionally, they can also navigate

to the desired code component by pressing the enter key.

The code summary feature helps developers using screen

readers get a “glance” of the different code constructs in the

file.

We realized that one of the major constructs all developers

frequently interact with are functions in a code file. To

enable quick glanceability and navigability across functions

in a file, we introduce a functions list view [Figure 3] that

displays an accessible list view of all the functions in the

current code file. Both the code summary and the functions

list feature enable code glanceability and quick navigation

of code.

Get Context of Current Line

Another important observation we made was that focus can

move across lines or even code files while debugging or

jumping into function definitions. In these scenarios, a VI

developer might be interested to know the context with

respect to the current line of code, at which the cursor is

placed. Keeping this in mind, we introduce a feature that

displays an accessible list view of context hierarchy

3 From here on, by mentioning developer we mean VI

developer, unless explicitly stated otherwise.

containing the enclosing function, classes, and namespace

that the current line of code belongs to.

Real-time Error Information

Most IDEs represent the syntax error in the code via syntax

coloring. In Visual Studio, this is done via red squiggles

[Figure 1]. We bring this visual information to VI

developers via pro-active error tones informing the

developer about syntax errors. The developer can then press

a keyboard shortcut to get an accessible list of errors.

Figure 2. Code Summary containing tree view of code

constructs

Figure 3. List of functions in the current code file.

Audio Debugging with TalkPoints

Debuggers are highly effective tools that assist developers

to identify bugs in their code. However, using debugger

tools is not a very accessible experience and VI developers

prefer printing console messages for debugging instead of

using a proper debugging tool [9]. Though “printf

debugging” can get the job done for small projects, the

process gets very cumbersome for larger projects. Also, the

code gets cluttered with these debugging messages and

needs to be cleaned up later. We propose a novel approach

to debugging with audio using both speech and non-speech

cues. There have been tools like WAD [18] and Sodbeans

[19] that explore audio for debugging source code. WAD,

for instance, focuses on conveying the execution flow to the

user. Though this is a very important piece of information,

developers often need to know this piece of information

with respect to very small parts of the code. Our approach

to audio debugging is different as it (I) gives developers the

option to choose between speech and non-speech based

debugging and (II) gives developers information about

specific variables or evaluates an expression in the

execution context. (III) gives an option to break or continue

execution after the audio cue. We have conceptualized and

implemented 3 types of TalkPoints: Speech Talkpoints,

Tone Talkpoints and Expression Talkpoints.

Feature Keyboard Command

Code summary Control + ~, Control + m

Functions list Control + ~, Control + f

Get context Control + ~, Control + g

Move to context Control + ~, Control + j

Error information Control + ~, Control + e

TalkPoints Control + ~, Control + b

Table 1. CodeTalk keyboard shortcuts.

Steps to add a Talkpoint are as follows:

1. Invoke add TalkPoint dialog, from the desired cursor

position by pressing a key combination. [Table 1]

2. Select the TalkPoint type.

3. Choose whether to pause or continue execution using the

continue checkbox.

4. Activate the TalkPoint using the add button.

Speech TalkPoints

Speech TalkPoints are similar to adding trace statements.

However, one small yet significant differentiating factor is

that speech TalkPoints speak out the message set by the

developer when they are hit without the developer having to

explicitly switch focus and search in the trace window.

Tone TalkPoints

Our rationale behind proposing and implementing Tone

TalkPoints was that developers often need to know only the

execution path. For instance, the developer might want to

know whether the execution entered an if, else or a catch

block. The developer can select from the list of

distinguishable tones while setting the TalkPoint. The tone

is played when the TalkPoint is hit.

Expression TalkPoints

In many situations, developers are interested to know the

value of a variable with respect to the execution context.

With expression TalkPoints, we give developers the ability

to have values of specific variables spoken to them when

these TalkPoints are hit. Assume the user wants to insert an

expression in the following code:

int[] array = { 1, 2, 3, 4, 5, 6, 7, 8 };
int count = 0;
for (int i = 0; i < array.Length(); i++)
{
 count = count + array[i];
 //do something here.
}

Let us say the developer wants to track the value of the

variable “count”. They can simply insert an Expression

TalkPoint at line 5 as “value of count is:” + count. When

the program is executed, the expression is run in the current

breakpoint context, and the result is spoken to the

developer. In the above case it will be: “value of count is

0”, “value of count is 1”, etc.

CodeTalk Design

CodeTalk’s design is both modular and extensible. Even

though the current implementation is for Visual Studio IDE,

CodeTalk can be easily implemented for other IDEs and

even other languages. CodeTalk mainly consists of the

following components.

• Keyboard manager

• Command objects

• Plugin outputs

• Language service and language specific

implementations

Keyboard manager: This is responsible for capturing

keyboard shortcuts, validating them and relaying it to the

appropriate command objects

Command objects: These objects encapsulate the end to end

functionality for a specific user command and send the

output to the appropriate output block.

Plugin output: This module handles outputs from the

command object. The output can be of various forms:

• Dialogs: Visual Studio dialog containing output

entities in a list or tree view. For instance, function list

command gives a dialog containing list view of all the

functions.

• Editor modifications: Move the cursor to a specific line

in the code file. For instance, move to context

command moves the cursor to the beginning of the

context block.

• Audio: Synthesize and send audio to the default system

audio output using Microsoft Speech Synthesis APIs.

Language service and language specific implementations:

At the heart of CodeTalk design is the Language service

block. This block defines a set of interfaces which are

invoked by the command objects. The language-specific

implementation modules implement these interfaces to add

support to the corresponding language.

The C# implementation in CodeTalk leverages the Roslyn

APIs [5] to implement the Language service interfaces. The

implementation mainly consists of visitor patterns on the

abstract syntax tree to accumulate the required entities and

context.

For Python implementation, CodeTalk uses IronPython

APIs [3]. For functionalities that require keyboard

shortcuts, we chose key commands similar to those

provided by Visual Studio. We also intend to make these

keyboard shortcuts customizable.

Bootstrapping CodeTalk

One of our authors, B, has been implementing and using

CodeTalk since its initial implementations. This exercise

helped us evolve CodeTalk’s feature set based on the

author’s needs. Also, the initial user survey was a reference

to us to ensure that the features we implement would help a

larger audience.

Author B was already familiar with using an IDE and was

encouraged by the improvement in productivity due to

CodeTalk right from the first set of features implemented:

the functions list view and the code summary. The author

used the plugin to implement subsequent features and could

see immediate benefit while trying to make sense of code

written by other members of the project.

The next set of features implemented were get context,

move to context and error information. The get context and

move to context features helped B quickly understand and

navigate classes. Though a reasonably experienced

programmer, B was relatively new to C# programming

language. Prior to implementing the error list and real-time

error information features, the author had to fix syntax

issues only by building the project. This build and fix

approach was a major productivity hiccup for B, as the

project took at least 5 minutes to build and syntax errors

were not available until the build completed. B observed a

significant improvement in productivity due to the error list

and real-time error information features as it didn’t require

explicitly building the project; Another major observation

was that compiler error messages were easier to understand

if attended to immediately as opposed to building after

accumulating a few of them. Prior to implementing

TalkPoints, the author B was very reluctant to use a

debugger, often resorting to printf debugging. There were

several occasions when B received code review comments

asking for the removal of printf/log statements.

To verify if our approaches helped more developers, we

performed an exploratory user study with 6 VI developers

proficient with coding. We excluded novice programmers

and those learning to program from this study since our

current focus is not on discoverability, but to improve the

productivity of already competent VI developers.

EXPLORATORY USER STUDY

We conducted an exploratory study with an objective of

getting feedback from active Visual Studio programmers to

validate the direction we were taking and to get a

preliminary idea of the utility of CodeTalk’s features. As

mentioned in the conclusion, a rigorous study is needed to

identify the strengths and drawbacks of our approach. The

study had four major components: Participant solicitation,

user study without and with CodeTalk, and post user study

online survey.

Participant solicitation

We circulated a short online survey to get basic information

of interested participants. We wanted participants who code

in C# or Python using Microsoft’s Visual Studio 2015 and

above.

We selected 6 participants who were reasonably

experienced with writing code in C# and using Visual

Studio. All the participants opted in to the study by sharing

their email id and signed a consent form regarding our

terms of study.

Setup for the Study

To observe developer’s usage, we setup a remote Virtual

Machine (VM) on Microsoft’s Azure platform. The VM

had the NVDA screen reader installed. For both the phases,

we wanted developers to be in their most comfortable

screen reader setup. To ensure this, we gave developers the

credentials to connect to the VM a few hours in advance to

the scheduled study time. Developers were also allowed to

install any screen reader plugins and configure the screen

reader to match their preferences. Most participants using

NVDA preferred to connect using the NVDA Remote add-

on. However, we requested participants to switch to

Microsoft’s remote desktop to perform tasks 3, 4, and 5 of

phase 2 as the NVDA Remote add-on does not pass through

system audio. However, switching to a remote desktop did

not result in any change in screen reader behavior.

JAWS users, however could not use the remote VM as

JAWS does not allow activations on Virtual Machines even

with the remote desktop add-on. We allowed participants

using JAWS to connect to a physical machine via JAWS

Tandem or remote desktop.

Participants connected with us over a Skype audio call and

shared their screen with us. This helped us observe user

behavior. We recorded participant’s microphone audio, our

microphone audio and their screen’s video for our

observation and further analysis.

Phase 1: Performing programming tasks without
CodeTalk

In this phase, participants were asked to perform 5

programming tasks using Visual Studio. We wanted to

observe participants IDE usage without our enhancements.

This phase also helped us better introduce our problem and

plugin to the participant. Before performing the tasks, we

asked participants about the general issues they faced as a

VI developer when using IDEs.

The programming tasks we chose did not require

developers to switch between multiple files. The

participants performed the following tasks.

1. Give the hierarchical structure of a code file

(namespace, classes, and methods) in a test project.

2. Go to a specified line in a code file using Visual

Studio’s go to line function and give us the context

(enclosing method, class, and namespace information)

with respect to the current line.

3. Open a code file and fix syntax errors in it.

4. Identify if running a project results in the execution

flow going through a catch block. Participants were not

allowed to modify the code. We allowed participants to

modify the code if they were unable to perform the task

without modifying the code.

5. Give the value of a variable in a loop in iteration “i”

without modifying the code. The list in the loop was

reading data from a file and participants were not

allowed to look at the file. Participants were allowed to

modify the code if they were unable to perform the

task.

Phase 2: Performing programming tasks with CodeTalk
Installed

On completion of phase 1, we introduced participants to

CodeTalk, our accessibility plugin for Visual Studio. Par-

ticipants were allowed to explore the plugin after our walk-

through and we also made sure they had access to all the

keyboard shortcuts in case they wanted to refer. Participants

were given the same tasks as in the previous phase albeit

with different code files. We did not make the use of

CodeTalk mandatory for this phase. The participants could

choose to use CodeTalk if they wanted to. We wanted to

observe the developers’ behavior given the tool. After the

tasks, we asked the developers 3 questions.

1. How was your experience in doing the task in both

Phase 1 and Phase 2?

2. Was there any more information you wish you had

while doing this task?

3. How often do you encounter these tasks in your day to

day programming?

After these questions, the participants were asked to give

general feedback on the plugin and the user study. Towards

the end of the call, we asked participants to fill a short

online survey4.

Participant demographics

We had a total of 6 participants in the exploratory study. All

participants have been coding for more than 1 year. Two of

them have been programming for about 3-5 years, one for

about 5-10 years and two for more than 10 years [Table 2].

All participants were male and completely blind. Five of the

4 We asked for their email ID in the survey for

compensating them later and mentioned this in the survey.

participants reported they have been using a computer for

more than10 years. Participants were from the United

States, United Kingdom, Spain, India and Romania. All

participants were familiar with C#.

Observations from the User Studies

[Table 3] shows the average rating for our plugin’s features.

Participants were asked to rate the plugin’s features on a

scale of 10 (1 being not useful and 10 being very useful).

CodeTalk’s utility was rated on average 8.83 by the

participants. We also describe our observations on

participant’s IDE usage while performing tasks in both

phases.

Participant Programming Experience

P1 1 – 2 years

P2 3 – 5 years

P3 3 – 5 years

P4 Above 10 years

P5 5 – 10 years

P6 Above 10 years

Table 2. Participant Demographics

Feature
Average Rating

(on a scale of 10)

Navigability features

(Code summary, Get context,

Function list, etc.)

8.83

Real time error information

(Pro-active error beeps and

Error list)

8.33

Audio debugging

(Tonal, Textual and Expression

TalkPoints)

8.5

Table 3. Participant ratings of CodeTalk features.

Task 1: Reporting code summary

In phase 1, 3 out of the 6 participants navigated through

code one line at a time to give us the summary. P3, P4 and

P6 used one of the IDE’s features to navigate through

different class and functions of the file. P4 and P6 had

developed their own navigation techniques using some of

Visual Studio’s features. P4 first navigated to the beginning

of the namespace and then to the end. He followed a similar

approach for all the blocks. However, this technique

involved navigating through code one line at a time. P6, on

the other hand, navigated by first folding the code and then

navigating through the folded code. In phase 2 however, all

participants preferred to use CodeTalk’s code summary

feature to report the summary. All participants except P2

mentioned that this is very useful to quickly understand

large code files and code written by other developers. P2

however mentioned that they work on their own code most

of the time and so would not need to get the summary of

code. However, they mentioned that this could come in

handy in situations where they have to look at other

people’s code. P3, who used the IDE’s feature to get the

structure of code preferred to use CodeTalk as well. “Using

this code summary does not require me to move focus away

from my IDE; I know that pressing enter or escape on the

dialog box will get me back to the file I was working on.”

was P3’s feedback on completing task 1. P4 commented:

“Having a keyboard shortcut to get the tree structure, is

very nice. It is just there. I do not have to use my methods

anymore. This is better as it is right there and gives me just

the summary.”

Task 2: Report context of a specific line

In this task, participants were asked to go to a line using

Visual Studio’s “go to” line feature. Participants were then

asked to report the context (enclosing function, classes and

namespaces) that the line belongs to. 3 out of the 5

participants preferred to navigate through the code one line

at a time. The code had a nested class. 3 out of the 5

participants however, missed reporting this outer class as

they had moved all the way to the top to report the

namespace after finding one of the class’s declaration

statements. In phase 2 however, all participants chose to use

CodeTalk’s get context feature to complete the task. They

mentioned that this feature would come in handy specially

when they want to debug or when they are taken to a line of

code by the IDE due to a breakpoint or exception.

Task 3: Fix syntax errors and build

In this task, developers were given code that had syntax

errors. Participants had to fix the errors and then build the

project. The initial action of all the participants excluding

P2 was to try and read the code. Then, all participants

except P2 built the project to check for syntax errors. P2

used other IDE features to fix the errors. In phase 2, all

participants except P2 preferred to use CodeTalk’s Error

information features as it did not require building the

project explicitly.

Task 4: Report whether the catch block is executed

In this task, developers were given a code file with a try and

a catch block and were asked whether the catch block be

executed if the code is run. The initial constraint for this

task was that the participants could not modify code. The

rationale behind putting this constraint is to see whether

participants were familiar with breakpoints. 3 out of the 6

participants could not perform this task without modifying

code; They mentioned that they did not find debuggers

accessible and did not use breakpoints. They usually

debugged by placing console statements (printf debugging).

Participants could report the answer to us once we allowed

them to modify code. In Phase 2, Participants were able to

perform this task very easily and they chose to make use of

CodeTalk’s Tone TalkPoints to identify whether the catch

block was executed. “I like the idea of breakpoints not

breaking, and simply continuing after playing the audio.”,

exclaimed participant P2.

Task 5: Find value of a variable at runtime

In this task, developers were given code that iterates a list

of numbers in a for loop and adds them to a variable sum.

The numbers are populated in the list using a file. To

perform this task, participants had two major constraints:

• Participants cannot modify code.

• Participants cannot read the file from which the values

are loaded.

All participants except P1 could complete this task in both

phases. In phase 1, 4 out of the 6 participants could not do it

without modifying code. We then allowed participants to

modify code. 3 out of these 4 participants could report the

value by adding console statements (printf debugging) and

1 participant, P1, could not finish the task in both phases. In

the second phase 4 of the 5 participants who finished the

task used Tone TalkPoints whereas 1 participant, P5, used a

combination of a Tone TalkPoint and Visual Studio’s locals

window to check for variable values.

Participants responded positively when they were asked

whether they encountered these tasks as a part of their day

to day programming. P2 however, did mention that they did

not encounter task one (reporting the summary of the code)

frequently as they mostly work on their own code, but also

said “this is definitely useful for situations where I have to

look at other people’s code”. “Yes, I find myself doing

these things quite frequently, during my assignments” was

P3’s feedback.

Participants were asked about their experience about the

plugin and the user study in general. “I never knew how

much information I was not getting because I was using a

screen reader. I had no clue sighted users had this much

information available.” said P1. P1 also mentioned that

they had difficulty in sorting through code in the post user

study survey. “I have difficulty to sort through code.

Perhaps this is due to my vision impairment and not really

an accessibility issue” said P1. It was a surprising

observation for us that these inaccessibilities were

considered by VI developers as consequences of their

impairment and not deficiencies in accessibility of the tool.

DISCUSSION

We believe that stepping back and looking at the nature of

accessibility challenges in the use of IDEs has been very

fruitful. The organization of these into four categories,

discoverability, glanceability, navigability and alertability,

has given us a structure to classify specific problems and to

solve them using the accumulated tools built to solve earlier

problems. In implementing CodeTalk we identified two key

ideas to help address these problems: the first is to extract

relevant information from the IDE that is spread around

visually and present them directly in summary form to the

VI developer. The second is to present additional

information through a secondary audio channel distinct

from the screen reader. A combination of these two ideas

have been used to address a subset of the identified

challenges in the current version of CodeTalk. However,

this systematic framework has opened numerous

possibilities for future research that we outline below.

The notion of TalkPoints has tremendous promise, not just

for VI developers, but even for sighted users. The

introduction of the auxiliary audio channel has literally

opened up additional bandwidth for the users. In particular,

expression TalkPoint has the potential to monitor and

announce subtle inter relations between functions and can

be a powerful debugging tool.

Promising initial user feedback shows that our approach

and CodeTalk have a positive impact on VI developers’

productivity. It has also given us considerable feedback and

additional insights which we intend to build on. However,

we need to explore evaluation metrics for the effectiveness

of these solutions and conduct more systematic user studies.

How can we say CodeTalk has enhanced productivity? Do

we measure the time taken to accomplish individual tasks

with and without CodeTalk? Or since VI developers using

IDEs depend extensively on keyboard shortcuts, should we

measure this improvement by logging keystrokes? Do we

just compare VI developers with and without CodeTalk or

compare VI developers with sighted users since the ultimate

goal of such accessibility work is to bridge the gap between

the two? These are some of the many interesting questions

that we have begun to grapple with in evaluating CodeTalk.

We also want focus on a broad class of issues that fall under

discoverability. Currently, getting started with Visual

Studio and similar IDEs requires significant hand-holding

from sighted peers. The discoverability issues are a major

reason for author A not switching to an IDE. Even

experienced VI developers who have used an IDE for a

long time are frequently surprised by new features they

stumble upon accidentally. Given the complexity of modern

IDEs, it is not practical to go through each one of the menu

items or to exhaustively read the user manual to discover all

the features.

In addition, this is rarely useful for a novice programmer

and unproductive for experienced users. We need to devise

new techniques that can gently induce the user to discover

features when it is most useful. Such discoverability, even

for sighted users, is still a challenge and it is a wide-open

area of research.

Control of navigation granularity is a very widely used

feature by screen reader users. Web navigation is generally

through different HTML elements like headings, form

controls, links etc. We would like to explore similar

granular navigation techniques specific to code especially

for easy navigation through classes, functions and inner

code blocks.

Our choice of implementing CodeTalk as a plugin allows us

to build these solutions in a manner that can easily be

ported across IDEs. We have open sourced our

implementation to facilitate further rapid development and

research5. Additionally, from user feedback, there is a need

for CodeTalk to support more popular scripting languages

like JavaScript.

CONCLUSION

We grouped the numerous accessibility challenges faced by

VI developers in using GUI based programming

environments into four categories, namely, discoverability,

glanceability, navigability and alertability. We presented

CodeTalk, a plugin for Visual Studio that enables VI

developers to overcome some of these challenges.

Participants in the exploratory user study have given very

positive feedback on the utility and potential of CodeTalk

to improve accessibility. We also presented several possible

research directions that emerge from this work.

ACKNOWLEDGEMENTS

We would like to thank Indrani Medhi Thies, Saqib Shaikh

and Sujeath Pareddy for insightful discussions and

suggestions.

REFERENCES

1. Y Vidhya. 2017. Preliminary Survey Responses.

Supplementary material - SurveyResponses.pdf.

(2017).

2. Catherine M Baker, Lauren R Milne, and Richard E

Ladner. 2015. Structjumper: A tool to help blind

programmers navigate and understand the structure of

code. In Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems.

ACM, 3043–3052.

3. IronPython Community. 2017. IronPython. Retrieved

September 19, 2017 from http://ironpython.net/.

4. Microsoft Corporation. 2017. Microsoft Visual Studio.

Retrieved September 19, 2017 from

http://www.visualstudio.com.

5. .Net Foundation. 2017a. Roslyn. Retrieved September

19, 2017 from https://github.com/dotnet/roslyn.

6. The Eclipse Foundation. 2017b. Eclipse. Retrieved

September 19, 2017 https://eclipse.org/.

7. Apple INC. 2017. XCode. Retrieved September 19,

2017 from https://developer.apple.com/xcode/.

8. Shaun K Kane and Jeffrey P Bigham. 2014. Tracking@

stemxcomet: teaching programming to blind students

via 3D printing, crisis management, and twitter. In

Proceedings of the 45th ACM technical symposium on

Computer science education. ACM, 247–252.

9. Sean Mealin and Emerson Murphy-Hill. 2012. An

exploratory study of blind software developers. In

Visual Languages and Human-Centric Computing

(VL/HCC), 2012 IEEE Symposium on. IEEE, 71–74.

5 http://github.com/Microsoft/CodeTalk

http://ironpython.net/
http://www.visualstudio.com/
https://github.com/dotnet/roslyn
https://eclipse.org/
https://developer.apple.com/xcode/
http://github.com/Microsoft/CodeTalk

10. U.S. Bureau of Labor Statistics. 2016. Software

Developers: Occupational Outlook Handbook:U.S.

bureau of Labor Statistics. Retrieved September 19,

2017 from https://www.bls.gov/ooh/computer-and-

information-technology/software-developers.htm.

11. Stack Overflow. 2017. Stack Overflow Developer

Survey 2017. Retrieved September 19, 2017 from

https://insights.stackoverflow.com/survey/2017.

12. Charles B Owen, Sarah Coburn, and J Castor. 2014.

Teaching Modern Object-Oriented Programming to the

Blind: An Instructor and Student Experience. In ASEE

Annual Conference.

13. Guillaume Pothier, Éric Tanter, and José Piquer. 2007.

Scalable omniscient debugging. ACM SIGPLAN

Notices 42, 10 (2007), 535–552.

14. TV Raman. 1996. Emacspeak-A Speech Interface. In

Proceedings of the SIGCHI conference on Human

factors in computing systems. ACM, 66–71.

15. Reddit. 2017. Can I still be a Computer Scientist if I’m

Blind?:cscareerquestions. Retrieved September 19,

2017

https://www.reddit.com/r/cscareerquestions/comments/

3e844q/can_i_still_be_a_computer_scientist_if_im_bli

nd/.

16. Dominic Roberts and Karlton Weaver. 2011. Audio

Aids in Source Code. Retrieved September 19, 2017

from

http://archive2.cra.org/Activities/craw_archive/dmp/aw

ards/2011/Roberts/FinalPaper.pdf.

17. Jaime Sanchez and Fernando Aguayo. 2004. Listen

what I do: blind learners programming through audio.

Memorias TISE (2004), 120–124.

18. Andreas Stefik, Roger Alexander, Robert Patterson,

and Jonathan Brown. 2007. WAD: A feasibility study

using the wicked audio debugger. In Program

Comprehension, 2007. ICPC’07. 15th IEEE

International Conference on. IEEE, 69–80.

19. Andreas Stefik, Andrew Haywood, Shahzada Mansoor,

Brock Dunda, and Daniel Garcia. 2009. Sodbeans. In

Program Comprehension, 2009. ICPC’09. IEEE 17th

International Conference on. IEEE, 293–294.

20. Andreas M Stefik, Christopher Hundhausen, and

Derrick Smith. 2011. On the design of an educational

infrastructure for the blind and visually impaired in

computer science. In Proceedings of the 42nd ACM

technical symposium on Computer science education.

ACM, 571–576.

21. U.S. Bureau of Labor Statistics. 2016. Economic News

Release: Table 3. Employed persons by disability

status, occupation, and sex, 2016 annual averages.

Retrieved September 19, 2017 from

https://www.bls.gov/news.release/disabl.t03.htm.

22. Ann C Smith, Justin S Cook, Joan M Francioni, Asif

Hossain, Mohd Anwar, and M Fayezur Rahman. 2004.

Nonvisual tool for navigating hierarchical structures. In

ACM SIGACCESS Accessibility and Computing. ACM,

133–139.

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://insights.stackoverflow.com/survey/2017
https://www.reddit.com/r/cscareerquestions/comments/3e844q/can_i_still_be_a_computer_scientist_if_im_blind/
https://www.reddit.com/r/cscareerquestions/comments/3e844q/can_i_still_be_a_computer_scientist_if_im_blind/
https://www.reddit.com/r/cscareerquestions/comments/3e844q/can_i_still_be_a_computer_scientist_if_im_blind/
http://archive2.cra.org/Activities/craw_archive/dmp/awards/2011/Roberts/FinalPaper.pdf
http://archive2.cra.org/Activities/craw_archive/dmp/awards/2011/Roberts/FinalPaper.pdf
https://www.bls.gov/news.release/disabl.t03.htm

